
UNIT III

ADVANCED DATA STRUCTURES

AVL TREE:

 AVL tree is a height-balanced binary search tree. 
 That means, an AVL tree is also a binary search tree but it is a balanced tree. 
 A binary tree is said to be balanced if, the difference between the heights of left and right

subtrees of every node in the tree is either  -1, 0 or +1.
 In other words, a binary tree is said to be balanced if the height of left and right children

of every node differ by either -1, 0 or +1. 
 In an AVL tree, every node maintains extra information known as balance factor. 
 AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is

named AVL in honour of its inventors.

An AVL tree is defined as follows...

An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node
is either -1, 0 or +1.

Balance Factor:

 Balance  factor  of  a  node is  the  difference  between  the  heights  of  the  left  and  right
subtrees of that node

Balance factor = height Of Left Subtree – height Of Right Subtree

 Height Of Left Subtree – Height Of Right Subtree = {-1,0,1}
 |BF|=|HLS-HRS|<=1

Example of AVL Tree:

 The above tree is a binary search tree and every node is satisfying balance factor 
condition. So this tree is said to be an AVL tree.



NOTE:

 Every AVL Tree is a binary search tree but every Binary Search Tree need not be AVL 
tree.

AVL Tree Rotations

 In AVL tree, after performing operations like insertion and deletion we need to check 
the balance factor of every node in the tree.

  If every node satisfies the balance factor condition then we conclude the operation 
otherwise we must make it balanced. 

 Whenever the tree becomes imbalanced due to any operation we use rotation operations 
to make the tree balanced.

 Rotation operations are used to make the tree balanced.

Rotation is the process of moving nodes either to left or to right to make the tree 
balanced.

 There are four rotations and they are classified into two types.



1. Single Left Rotation (LL Rotation)



 In LL Rotation, every node moves one position to left from the current position. 
 To understand LL Rotation,  let  us consider the following insertion operation in AVL

Tree...

2. Single Right Rotation (RR Rotation)



General Representation

 In RR Rotation, every node moves one position to right from the current position. 



 To understand RR Rotation, let  us consider the following insertion operation in AVL
Tree...

3.Left Right Rotation (LR Rotation)



 The LR Rotation is a sequence of single left rotation followed by a single right rotation. 
 In LR Rotation, at first, every node moves one position to the left and one position to

right from the current position. 
 To understand LR Rotation,  let  us consider the following insertion operation in AVL

Tree...



4. Right Left Rotation (RL Rotation)



 The RL Rotation is sequence of single right rotation followed by single left rotation.
 In RL Rotation, at first every node moves one position to right and one position to left

from the current position. 
 To understand RL Rotation,  let  us consider the following insertion operation in AVL

Tree...



Representation of AVL Tree

Struct AVLNode

{

    int data;

    struct AVLNode *left, 

     struct AVLNode *right;

    int balfactor;

};

Operations on an AVL Tree



The following operations are performed on AVL tree...

1. Search: The search operation in the AVL tree is similar to the search operation in a  Binary 
search tree.

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the 

function

Step 4 - If both are not matched, then check whether search element is smaller or larger 

than that node value.

Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6 - If search element is larger, then continue the search process in right subtree.

Step 7 - Repeat the same until we find the exact element or until the search element is 

compared with the leaf node.

Step 8 - If we reach to the node having the value equal to the search value, then display 

"Element is found" and terminate the function.

Step 9 - If we reach to the leaf node and if it is also not matched with the search element, 

then display "Element is not found" and terminate the function.

2. Insertion:

In AVL Tree, a new node is always inserted as a leaf node. The insertion operation is performed 
as follows...

Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2 - After insertion, check the Balance Factor of every node.

Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said 
to be imbalanced. In this case, perform suitable Rotation to make it balanced and go for 
next operation.

Example: Construct an AVL Tree by inserting numbers from 1 to 8.







 3. Deletion:

 The deletion operation in AVL Tree is similar to deletion operation in BST. 
 But after every deletion operation, we need to check with the Balance Factor condition. 
 If the tree is balanced after deletion go for next operation otherwise perform suitable

rotation to make the tree Balanced.

Example

Delete Node 55 from the AVL tree shown in the following image.



Example 2:

Delete the node 30 from the AVL tree shown in the following image.



SOLUTION:

BALANCE FACTOR:



 Height Of Left Subtree – Height Of Right Subtree = {-1,0,1}

int BF(node *T)
{

int lh,rh;
if(T==NULL)

return(0);
 

if(T->left==NULL)
lh=0;

else
lh=1+T->left->ht;

 
if(T->right==NULL)

rh=0;
else

rh=1+T->right->ht;
 

return(lh-rh);
}

HEIGHT

int height(node *T)
{

int lh,rh;
if(T==NULL)

return(0);

if(T->left==NULL)
lh=0;

else
lh=1+T->left->ht;

if(T->right==NULL)
rh=0;

else
rh=1+T->right->ht;

if(lh>rh)
return(lh);

return(rh);
}



H.W
2  4  6  8  10  12  16  20  25  34

8  5  10  15  20  18  3













Splay Tree



 Splay tree is another variant of a binary search tree. 
 In a splay tree, recently accessed element is placed at the root of the tree. A splay tree is .

o Splay Tree is a self - adjusted Binary Search Tree in which every operation

on element rearranges the tree so that the element is placed at the root of the
tree.

 All the operations in splay tree are involved with a common operation called "Splaying".
 Splaying an element  is  the  process  of  bringing it  to  the  root  position  by performing

suitable rotation operations.
 Every operation on splay tree performs the splaying operation.
  For example,  the  insertion operation first  inserts  the new element  using the binary

search tree insertion process,  then the newly inserted element  is  splayed so that  it  is
placed at the root of the tree. 

 The search operation in a splay tree is nothing but searching the element using binary
search process and then splaying that searched element so that it is placed at the root of
the tree.

 In splay tree, to splay any element we use the following rotation operations...
Rotations in Splay Tree

1. Zig Rotation(single right rotation)
2. Zag Rotation (single left rotation)
3. Zig - Zig Rotation (Double right rotation)
4. Zag - Zag Rotation (Double left rotation)
5. Zig - Zag Rotation (Double right left rotation)
6. Zag - Zig Rotation (Double left right rotation)

1. Zig Rotation

 The Zig  Rotation in  splay  tree  is  similar  to  the  single  right  rotation in  AVL Tree
rotations. 

 In zig rotation,  every node moves one position to the right  from its  current  position.
Consider the following example...

2. Zag Rotation

 The Zag Rotation in splay tree is similar to the single left rotation in AVL Tree rotations. 
 In  zag  rotation,  every  node moves  one  position  to  the  left  from its  current  position.

Consider the following example...



3. Zig-Zig Rotation

 The Zig-Zig Rotation in splay tree is a double zig rotation. 
 In zig-zig rotation, every node moves two positions to the right from its current position.

Consider the following example...

4. Zag-Zag Rotation

 The Zag-Zag Rotation in splay tree is a double zag rotation.
 In zag-zag rotation, every node moves two positions to the left from its current position.

Consider the following example...

5. Zig-Zag Rotation

 The Zig-Zag Rotation in splay tree is a sequence of zig rotation followed by zag rotation.
 In zig-zag rotation, every node moves one position to the right followed by one position

to the left from its current position. Consider the following example...



6. Zag-Zig Rotation

 The Zag-Zig Rotation in splay tree is a sequence of zag rotation followed by zig rotation.
 In zag-zig rotation, every node moves one position to the left followed by one position to

the right from its current position. Consider the following example...

 Every Splay tree must be a binary search tree but it is need not to be balanced tree.

Insertion Operation in Splay Tree
 The insertion operation in Splay tree is performed using following steps...

Step 1 - Check whether tree is Empty.
Step  2  - If  tree  is  Empty  then  insert  the newNode as  Root  node  and  exit  from  the
operation.
Step 3 - If tree is not Empty then insert the newNode as leaf node using Binary Search
tree insertion logic.
Step 4 - After insertion, Splay the newNode

















Deletion Operation in Splay Tree
 The deletion operation in splay tree is similar to deletion operation in Binary Search Tree.
 But before deleting the element,  we first need to splay that element and then delete it

from the root position. 
 Finally join the remaining tree using binary search tree logic.





H.W
1.  8,17,1,14,16,15 insertion using splay tree.

B - Tree 

 In search trees like binary search tree,  AVL Tree, etc.,  every node contains only one

value (key) and a maximum of two children. 

 But there is a special type of search tree called  B-Tree in which a node contains more

than one value (key) and more than two children.

 B-Tree also called Height Balanced m-way Search Tree. Later it was named as B-Tree.

B-Tree can be defined as follows...

B-Tree is a self-balanced search tree in which every node contains multiple keys and has

more than two children.

 The B-Trees are specialized m-way search tree. This can be widely used for disc access. 

 A B-tree of order m, can have maximum m-1 keys and m children. This can store large

number of elements in a single node. So the height is relatively small. This is one great

advantage of B-Trees.

B-Tree of Order m has the following properties...

1. Every node in a B-Tree except root contains at least [m/2]-1 keys and maximum of 

m-1 keys

2. Every internal node has at least m/2 children.

3. The root node has at least 2 children if it is not leaf.

4. A non leaf node with k children has k-1 keys

5. All leaf nodes must be at the same level.

6. All the key values in a node must be in Ascending Order.

 For example, B-Tree of Order 4  contains a maximum of 3 key values in a node and

maximum of 4 children for a node.



Operations on a B-Tree
The following operations are performed on a B-Tree...

1. Search
2. Insertion
3. Deletion

Search Operation in B-Tree
 The search operation in B-Tree is similar to the search operation in Binary Search Tree.

 In a Binary search tree, the search process starts from the root node and we make a 2-way

decision every time (we go to either left subtree or right subtree). 

 In B-Tree also search process starts  from the root node but  here we make an n-way

decision every time. 

 Where 'n' is the total number of children the node has. 

In a B-Tree, search operation is performed as follows...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with first key value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the

function

Step 4 - If both are not matched, then check whether search element is smaller or larger

than that key value.

Step 5 - If search element is smaller, then continue the search process in left subtree.

Step 6 - If search element is larger, then compare the search element with next key value

in the same node and repeat steps 3, 4, 5 and 6 until we find the exact match or until the

search element is compared with last key value in the leaf node.



Step 7 - If the last key value in the leaf node is also not matched then display "Element is

not found" and terminate the function.

Insertion Operation in B-Tree
In a B-Tree, a new element must be added only at the leaf node. That means, the new key Value

is always attached to the leaf node only. The insertion operation is performed as follows...

Step 1 - Check whether tree is Empty.

Step 2 - If tree is Empty, then create a new node with new key value and insert it into the

tree as a root node.

Step 3 - If tree is Not Empty, then find the suitable leaf node to which the new key value

is added using Binary Search Tree logic.

Step 4 - If that leaf node has empty position, add the new key value to that leaf node in

ascending order of key value within the node.

Step 5 - If that leaf node is already full, split that leaf node by sending middle value to its

parent node. Repeat the same until the sending value is fixed into a node.

Step 6 - If the spilting is performed at root node then the middle value becomes new root

node for the tree and the height of the tree is increased by one.

Example:

Construct a B-Tree of Order 3 by inserting numbers from 1 to 10.
o m=3
o max children =m=3,
o min children: leaf =0,root=2,internal node=m/2=1.5(ceiling) 2
o max key=m-1=2 



o min key:  root=1,other node=[m/2]-1=1.5(ceiling value) 2-1=1

1.   Insert 1   

2. Insert 2

3. Insert 3

Insert 3, but key value 2, so we split that node by sending middle value 2 to its
parent node. But here,  this  node doesn’t  has parent.  So,  this  middle value
becomes a new root node.

4. Insert 4

5. Insert 5



6. Insert 6



7.Insert 7

8. Insert 8

9.Insert 9

10. Insert 10

















B+ Tree



 B+ Tree is an extension of B Tree which allows efficient insertion, deletion and search
operations.

 In B Tree, Keys and records both can be stored in the internal as well as leaf nodes.
 Whereas, in B+ tree, records (data) can only be stored on the leaf nodes while internal

nodes can only store the key(index value).
 The leaf nodes of a B+ tree are linked together in the form of singly linked lists to make

the search queries more efficient.
 B+ Tree are used to store the large amount of data which can not be stored in the main

memory.
  Due to the fact that, size of main memory is always limited, the internal nodes (keys to

access records) of the B+ tree are stored in the main memory whereas, leaf nodes are
stored in the secondary memory.

 The internal nodes of B+ tree are often called index nodes.   B+ tree of order 3 is shown
in the following figure.

Advantages of B+ Tree
  Records can be fetched in equal number of disk accesses.
 Height of the tree remains balanced and less as compare to B tree.
 We can access the data stored in a B+ tree sequentially as well as directly.
 Keys are used for indexing.
 Faster search queries as the data is stored only on the leaf nodes.

B Tree VS B+ Tree

SN B Tree B+ Tree

1 Search keys can not be repeatedly stored. Redundant search keys can be present.

2 Data can be stored in leaf nodes as well as 
internal nodes

Data can only be stored on the leaf nodes.

3 Searching for some data is a slower process 
since data can be found on internal nodes as 
well as on the leaf nodes.

Searching is comparatively faster as data 
can only be found on the leaf nodes.

4 Deletion of internal nodes are so complicated 
and time consuming.

Deletion will never be a complexed 
process since element will always be 



deleted from the leaf nodes.

5 Leaf nodes can not be linked together. Leaf nodes are linked together to make the 
search operations more efficient.

Insertion in B+ Tree

Step 1: Insert the new node as a leaf node

Step 2: If the leaf doesn't have required space, split the node and copy the middle node to the

next index node.

Step 3: If the index node doesn't have required space, split the node and copy the middle element

to the next index page.

Example 2: 
          Insert the following key values 6, 16, 26, 36, 46 on a B+ tree with order = 3.

m=3
Max children=3



Min children=2
Max key=2
Min key=1





Example 3: 
          Insert the following key values 1 3 5 7 9 2 4 6 8 10 on a B+ tree with order = 4.

m=4
Max children=4
Min children=2
Max key=3
Min key=1





H.W
1. To construct  B+ tree order 4 ,   inserting values  1  4  7  10  17  21  31  25  19  20  28  42
2. To construct B+ tree order 4,     inserting values   2  4  7  10  17  21  28
3. To construct B+ tree order 5, ,     inserting values  7  10  1  23  15  17  9  11  39  35  8  40  25

Deletion in B+ Tree

Step 1: Delete the key and data from the leaves.

Step 2: if the leaf node contains less than minimum number of elements, merge down the node with its
sibling and delete the key in between them.

Step 3: if  the index node contains less than minimum number of elements, merge the node with the
sibling and move down the key in between them.





Priority queues
 Priority queue is a special kind of queue data structure which will have precedence over

jobs.
 Priority  Queue  Data  Structure  is  a  regular  Queue  Data  Structure  with  additional

properties
o Each element has a priority associated with it

o An element with high priority is served before an element with low priority

o If two elements have the same priority, they are served according to the order in

which they are enqueue
 Thus, a max-priority queue returns the element with maximum key first whereas, a min-

priority queue returns the element with the smallest key first.

 Priority queues are used in many algorithms like Huffman Codes, Prim's algorithm, etc. It
is also used in scheduling processes for a computer, etc.

Basic Operations
1. Insertion operation: 

It is similar to enqueue, where we insert an element in the priority queue.
            2. DeleteMin operation:
                      It is equivalent of dequeue, where we delete at minimum element from priority 
                      queue.

Implementations:
 They are several ways for implementing priority queue.



       1. Linked list- simple linked list implementation of priority queue to perform  
           insertion at front and delete the minimum element.
       2. Binary search tree - to perform insertion at front and delete the minimum element.
       3. Binary heap – efficient way of implementing priority queue.

Binary heap:
 Binary heap is merely referred as heaps. A heap is a tree-based data structure in which all

the nodes of the tree are in a specific order.

 Heap have two properties namely,
o Structure property

o Heap order property

Structure property
 A binary heap is a binary tree (NOT a BST) that is the tree is completely filled except 

possibly the bottom level, which is filled from left to right. such a tree is known as a 
complete binary tree.

 Example of a complete binary tree.

 For any element in array position i, the left child is in position 2i, the  right 
child is in position  2i+1 and the parent is in position i/2.



Heap order property

 In a heap, for every node X, the key in the parent of X is smaller than or equal 
to the key in X. For example, a complete binary tree that has the heap order 
property.

A binary heap can be classified further as either a max-heap or a min-heap based on 
the ordering property.



 
1.     Max-Heap  

 In this heap, the key value of a node is greater than or equal to the key value of 
the highest child.
 
                                                            Hence, H[Parent(i)] ≥ H[i]

2. Min Heap
n mean-heap, the key value of a node is lesser than or equal to the key value of the 
lowest child.

                                                       Hence, H[Parent(i)] ≤ H[i]

Heapify
 Heapify is the process of creating a heap data structure from a binary tree. It is used to create a 

Min-Heap or a Max-Heap.

Difference

Min-Heap Max-Heap

The root node has the minimum value. The root node has the maximum value.
The value of each node is equal to or greater
than the value of its parent node.

The value of  each node is  equal  to  or  less
than the value of its parent node.

A complete binary tree. A complete binary tree.



Operations on Max Heap
The following operations are performed on a Max heap data structure...

1. Insertion
2. Deletion

Insertion Operation in Max Heap
Insertion Operation in max heap is performed as follows...

Step 1 - Insert the newNode as last leaf from left to right.

Step 2 - Compare newNode value with its Parent node.

Step 3 - If newNode value is greater than its parent, then swap both of them.

Step 4 - Repeat step 2 and step 3 until newNode value is less than its parent node (or)  

              newNode reaches to root.
Example

Consider the above max heap. Insert a new node with value 85.

Step 1 - Insert the newNode with value 85 as last leaf from left to right. That means newNode is
added as a right child of node with value 75. After adding max heap is as follows...



Step 2 - Compare newNode value (85) with its Parent node value (75). That means 85 > 75

Step 3 - Here newNode value (85) is greater than its parent value (75), then swap both of them. After 
swapping, max heap is as follows..

step 4 - Now, again compare newNode value (85) with its parent node value (89).

Here, newNode value (85) is smaller than its parent node value (89). So, we stop insertion process. 
Finally, max heap after insertion of a new node with value 85 is as follows...



Deletion Operation in Max Heap
In a max heap, deleting the last node is very simple as it does not disturb max heap properties.

Deleting root node from a max heap is little difficult as it disturbs the max heap properties. We
use the following steps to delete the root node from a max heap...

Step 1 - Swap the root node with last node in max heap

Step 2 - Delete last node.

Step 3 - Now, compare root value with its left child value.

Step 4 - If root value is smaller than its left child, then compare left child with its right
sibling. Else goto Step 6

Step  5  - If left  child  value  is  larger than  its right  sibling,  then swap  root with left
child otherwise swap root with its right child.

Step 6 - If root value is larger than its left child, then compare root value with its right
child value.

Step  7  - If root  value  is  smaller than  its right  child,  then swap  root with right
child otherwise stop the process.

Step 8 - Repeat the same until root node fixes at its exact position.

Example
Consider the above max heap. Delete root node (90) from the max heap.

 Step 1 - Swap the root node (90) with last node 75 in max heap. After swapping max
heap is as follows...



 Step 2 - Delete last node. Here the last node is 90. After deleting node with value 90
from heap, max heap is as follows...

Step 3 - Compare root node (75) with its left child (89).

Here, root value (75) is smaller than its left child value (89). So, compare left child (89)
with its right sibling (70).



Step 4 - Here, left child value (89) is larger than its right sibling (70), So, swap root (75) 
with left child (89).

Step 5 - Now, again compare 75 with its left child (36).



Here, node with value 75 is larger than its left child. So, we compare node 75 with its 
right child 85.

Step 6 - Here, node with value 75 is smaller than its right child (85). So, we swap both of 
them. After swapping max heap is as follows...

Step 7 - Now, compare node with value 75 with its left child (15).

Here, node with value 75 is larger than its left child (15) and it does not have right child. 
So we stop the process.

Finally, max heap after deleting root node (90) is as follows...



example 2:  Consider elements in array {1   4   3   7   8   9  10 }



Min heap

Consider elements in array {10, 8, 9, 7, 6, 5, 4} .

Applications of priorty queue:

o A priority queue is typically implemented using Heap data structure.

Applications:

o Dijkstra’s Shortest Path Algorithm using priority queue: When the graph is stored

in the form of  adjacency list  or matrix,  priority  queue can be used to  extract

minimum efficiently when implementing Dijkstra’s algorithm.



o Prim’s algorithm: It is used to implement Prim’s Algorithm to store keys of nodes

and extract minimum key node at every step.

o Data compression : It is used in Huffman codes which is used to compresses data.

o Artificial Intelligence : A* Search Algorithm : The A* search algorithm finds the

shortest  path  between  two  vertices  of  a  weighted  graph,  trying  out  the  most

promising routes first. The priority queue (also known as the fringe) is used to

keep track of unexplored routes, the one for which a lower bound on the total path

length is smallest is given highest priority.

o Heap  Sort :  Heap  sort  is  typically  implemented  using  Heap  which  is  an

implementation of Priority Queue.

Binomial heap or queue 

 Binomial heap is a heap which is similar to a binary heap but also support 

quick merging of two heaps.

 This is achieved by using a special data structure we hae is called binomial 

queue.

Binomial queue  :  

 Binomial queues are a collection of heap-ordered trees. Each of the heap-

ordered trees is called a binomial tree.

o Not just one tree, but a collection of trees  

o each tree has a defined structure and capacity  

o each tree has the familiar heap-order property

 Binomial queue called as binomial heap, generally satisfy min heap 

property. 

 Assume binomial tree represented as BK .That means, BT of order k 

contains 2k  nodes.

o suppose order k  -> 2k

                                 0   ->20 =1 element
1   ->21 =2 element
2   ->22 =4 element
3  ->23 =8  element

 The number of nodes in a tree of depth d is exactly 2d.

https://en.wikipedia.org/wiki/Data_compression
https://tutorialspoint.dev/slugresolver/heap-sort/
https://tutorialspoint.dev/slugresolver/a-search-algorithm/
https://tutorialspoint.dev/slugresolver/tag/huffman-coding/


Structure of binomial heap

 a binomial heap is implemented as a set of binomial tree that satisfy the 

binomial heap properties,

o each binomial tree in a heap obeys the min heap property(p<=c)

o there can only be either one or zero binomial trees for each order, 

including zero order.

Operations in binomial queue:

1. merge

2. insertion

3. find min

4. delete

Merge operation:

 Simple operation is the merging of two binomial tree of same order within 

a binomial heap.

o Bk =Bk-1+Bk-1



 As their root node is the smallest element within the tree, by comparing 

the two keys, smaller of them is the min key and becomes the new root 

node.

 Then the other tree becomes a subtree of the combined tree.

Example

BQ.1                       BQ.2                                   BQ3

                                   =>             



Insertion operation:

 Insertion is just a special case of merging, since we merely create a one-

node tree and perform a merge.







Find Min operation:

 To find min element of the heap, only compare the root of the binomial 

heap.

   Delete min operation:

 Delete min element from the heap

 First find the element, remove it from its binomial tree and obtain a list of 

its subtrees

 Then transform this list of subtree into a separate binomial heap by 

reordering them from smallest to biggest order.
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