UNIT 111

ADVANCED DATA STRUCTURES

AVL TREE:

® AVL tree is a height-balanced binary search tree.

¢ That means, an AVL tree is also a binary search tree but it is a balanced tree.

* A binary tree is said to be balanced if, the difference between the heights of left and right
subtrees of every node in the tree is either -1, 0 or +1.

¢ In other words, a binary tree is said to be balanced if the height of left and right children
of every node differ by either -1, 0 or +1.

¢ Inan AVL tree, every node maintains extra information known as balance factor.

® AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is
named AVL in honour of its inventors.

An AVL tree is defined as follows...

An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node
is either -1, 0 or +1.

Balance Factor:

e Balance factor of a node is the difference between the heights of the left and right
subtrees of that node

Balance factor = height Of Left Subtree — height Of Right Subtree

e Height Of Left Subtree — Height Of Right Subtree = {-1,0,1}
e |BF|=|HLS-HRS|<=1

Example of AVL Tree:

o’
(85)

¢ The above tree is a binary search tree and every node is satisfying balance factor
condition. So this tree is said to be an AVL tree.



NOTE:

e Every AVL Tree is a binary search tree but every Binary Search Tree need not be AVL
tree.

AVL Tree Rotations

e In AVL tree, after performing operations like insertion and deletion we need to check
the balance factor of every node in the tree.

e If every node satisfies the balance factor condition then we conclude the operation
otherwise we must make it balanced.

¢  Whenever the tree becomes imbalanced due to any operation we use rotation operations
to make the tree balanced.

¢ Rotation operations are used to make the tree balanced.

Rotation is the process of moving nodes either to left or to right to make the tree
balanced.

¢ There are four rotations and they are classified into two types.
Left Rotation (LL Rotation)
Single Rotation <
/ Right Rotation (RR Rotation)

Left Right Rotation (LR Rotation)
Double Rotation <
Right Left Rotation (RL Rotation)

Rotations



1. Single I eft Rotation (LL Rotation

Gieneral Representation

INSERT

INSERT

Fig. 3.6.4 (b) After Rotation

ROUTINE TO PERFORM SINGLE ROTATION WITH RIGHT :-

l Single Rotation With Right (Position K) :
{
Posi-tion RS
'K, = K.! —>l Right;
K, —> Right=K, —> Left ;
K2, — Left =K, ;

K, = Height = Max (Height (K, = Left), Height (K, = Right)) +1 ;

K, = Height = Max (Height (K, = Left), Height (K, — Right)) +1 ;
Return K, ;

e




¢ In LL Reotation, every node moves one position to left from the current position.
* To understand LL Rotation, let us consider the following insertion operation in AVL
Tree...

insert 1,2 and 3

-2
0
-1
0 0
0
Tree is imbalanced To make balanced we use After LL Rotation
LL Rotation which moves Tree is Balanced

nodes one position to left

2. Single Right Rotation (RR Rotation)



General Representation

f INSERT E

Fig. 3.6.2 (b) After rotation

ROUTINE TO PERFORM SINGLE ROTATION WITH LEFT

i — e e
SingleRotatewithLeft (Position K,)

{ .
Position K ;
k =1 = Left
K, = left=K, — Right;
K Rigl}t W
K, = Height = Max (Height (K, —> Left), Height (K, —> Right)) + 1 ;
K|_ — Height = Max (Height (K, —> left), Height (K, = Right)) + 1;

return K, ;

. —

¢ In RR Reotation, every node moves one position to right from the current position.



* To understand RR Rotation, let us consider the following insertion operation in AVL
Tree...

insert 3, 2 and 1

2
., 0
1 :
0 0
0
Tree is imbalanced To make balanced we use After RR Rotation
because node 3 has balance factor 2 RR Rotation which moves Tree is Balanced

nodes one position to right

3.Left Right Rotation (LR Rotation)



|
i

The LR Rotation is a sequence of single left rotation followed by a single right rotation.
In LR Rotation, at first, every node moves one position to the left and one position to

right from the current position.

To understand LR Rotation, let us consider the following insertion operation in AVL

Tree...

Double Rotation

Double Rotation is performed to fix case 2 and case 3,

Case2:

Aninsertion into the right subtree of the leftchild.

General Representation

A e double

_ otation

Before
Fig. 3.6.6

This can be performed by 2 single rotations.

AVARL

After

JSingIe Rotation with right (K, - left)
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Fig. 3.67 Balanced AVL Tree
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ROUTINE TO PERFORM DOUBLE ROTATION WITH LEFT :

Double Rotate with left (Position K) |
{ 1* Rotation Between K &K, ¥ §
K, = Left = Single Rotate with Right (K, -» Lefy o

/* Rotation Between K &K, *
Return Single Rotate With Left (K,); :
) . Y

Data Structures

Trees

ki)

-, o



insert 3, 1 and 2

Tree is imbalanced LL Rotation

because node 3 has balance factor 2

4. Right I eft Rotation (RL Rotation)

] Case 4, :

1| An Insertion into the left subtree of the right child of K. .
|

| # General Representation :-

—

double rotation
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Fig. 3.6.8
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This can also be done by performing single rotation with left and then single rotation with right.

|1 i

Data Structures

RR Rotation

After LR Rotation
Tree is Balanced

I Single Rotate with Right (K)

(%)
il e
AAVARA

Fig. 3.6.9 Balanced AVL Tree After double rotation.
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ROUTINE TO PERFORM DOUBLE ROTATION WITH RIGHT :

Double Rotate with Right (Position K)
{

/* Rotation Between K, & K, */

K,— Right= Single Rotate With Left (K1 — Right);
/* Rotation Between K, & K, */

return Single Rotate With Right (K,

|

The RL Rotation is sequence of single right rotation followed by single left rotation.

In RL Rotation, at first every node moves one position to right and one position to left
from the current position.

To understand RL Rotation, let us consider the following insertion operation in AVL
Tree...

insert 1, 3 and 2

-2
0
1 K After LL Rotation
0 :
Tree is imbalanced RR Rotation LL Rotation After RL Rotation

because node 1 has balance factor -2

Tree is Balanced



Representation of AVL Tree

Struct AVLNode

{
int data;
struct AVLNode *left,
struct AVLNode *right;

int balfactor;

b

Al
P R
// D \\ NULL F NULL NULL G \\NULL H NULL
NULL I NULL NULL J NULL NULL K NULL

Operations on an AVL Tree




The following operations are performed on AVL tree...

1. Search: The search operation in the AVL tree is similar to the search operation in a Binary
search tree.
Step 1 - Read the search element from the user.
Step 2 - Compare the search element with the value of root node in the tree.
Step 3 - If both are matched, then display "Given node is found!!!" and terminate the
function
Step 4 - If both are not matched, then check whether search element is smaller or larger
than that node value.
Step 5 - If search element is smaller, then continue the search process in left subtree.
Step 6 - If search element is larger, then continue the search process in right subtree.
Step 7 - Repeat the same until we find the exact element or until the search element is
compared with the leaf node.
Step 8 - If we reach to the node having the value equal to the search value, then display
"Element is found" and terminate the function.
Step 9 - If we reach to the leaf node and if it is also not matched with the search element,

then display "Element is not found" and terminate the function.

2. Insertion:

In AVL Tree, a new node is always inserted as a leaf node. The insertion operation is performed
as follows...

Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic.
Step 2 - After insertion, check the Balance Factor of every node.
Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said
to be imbalanced. In this case, perform suitable Rotation to make it balanced and go for
next operation.

Example: Construct an AVL Tree by inserting numbers from 1 to 8.



insert 1

0

@ Tree is balanced

insert 2

Tree is balanced

msert 3

Tree is imbalanced LL Rotation Tree is balanced



insert 4

Tree is balanced

Tree is imbalanced LL Rotation at 3

Tree is imbalanced LL Rotation at 2 Tree is balanced



ingert 7

Tree is imbalanced LL Rotation at 3 Tree is balanced

ingert 8

Tree is balanced

3. Deletion:

¢ The deletion operation in AVL Tree is similar to deletion operation in BST.

¢ But after every deletion operation, we need to check with the Balance Factor condition.

e [f the tree is balanced after deletion go for next operation otherwise perform suitable
rotation to make the tree Balanced.

Example

Delete Node 55 from the AVL tree shown in the following image.
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Example 2:

Delete the node 30 from the AVL tree shown in the following image.
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BALANCE FACTOR:




¢ Height Of Left Subtree — Height Of Right Subtree = {-1,0,1}

int BF(node *T)
{
int 1h,rh;
if(T==NULL)
return(0);

if(T->left==NULL)
1h=0;

else
Ih=1+T->left->ht;

if(T->right==NULL)
rh=0;

else
rh=1+T->right->ht;

return(lh-rh);

HEIGHT

int height(node *T)
{
int 1h,rh;
if(T==NULL)
return(0);

if(T->left==NULL)
1h=0;

else
Ih=1+T->left->ht;

if(T->right==NULL)
rh=0;

else
rh=1+T->right->ht;

if(Ih>rh)
return(lh);

return(rh);
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Splay Tree



Splay tree is another variant of a binary search tree.
In a splay tree, recently accessed element is placed at the root of the tree. A splay tree is .
0 Splay Tree is a self - adjusted Binary Search Tree in which every operation
on element rearranges the tree so that the element is placed at the root of the
tree.

All the operations in splay tree are involved with a common operation called "Splaying".
Splaying an element is the process of bringing it to the root position by performing
suitable rotation operations.

Every operation on splay tree performs the splaying operation.

For example, the insertion operation first inserts the new element using the binary
search tree insertion process, then the newly inserted element is splayed so that it is
placed at the root of the tree.

The search operation in a splay tree is nothing but searching the element using binary
search process and then splaying that searched element so that it is placed at the root of
the tree.

In splay tree, to splay any element we use the following rotation operations...

Rotations in Splay Tree

1. Zig Rotation(single right rotation)

2. Zag Rotation (single left rotation)

3. Zig - Zig Rotation (Double right rotation)

4. Zag - Zag Rotation (Double left rotation)

5. Zig - Zag Rotation (Double right left rotation)
6. Zag - Zig Rotation (Double left right rotation)

1. Zig Rotation

The Zig Rotation in splay tree is similar to the single right rotation in AVL Tree
rotations.
In zig rotation, every node moves one position to the right from its current position.

Consider the following example...
Splay ( 3) 9

6
P» & &

3) ©
Zig Rotation

e o Single Right Rotation o o

2. Zag Rotation

The Zag Rotation in splay tree is similar to the single left rotation in AVL Tree rotations.
In zag rotation, every node moves one position to the left from its current position.
Consider the following example...



9 Splay (5) e
2 (5 38 ©

Zag Rotation

o o Single Left Rotation e o

3. Zig-Zig Rotation

e The Zig-Zig Rotation in splay tree is a double zig rotation.
¢ In zig-zig rotation, every node moves two positions to the right from its current position.
Consider the following example...

Splay ( 2)

'S

Zig-Zig Rotation

Double Right Rotation

4. Zag-Zag Rotation
The Zag-Zag Rotation in splay tree is a double zag rotation.

¢ In zag-zag rotation, every node moves two positions to the left from its current position.
Consider the following example...

(6
e Spl
play (6) 5
OO
Zag-Zag Rotation e
o Double Left Rotation

4)

5. Zig-Zag Rotation

The Zig-Zag Rotation in splay tree is a sequence of zig rotation followed by zag rotation.
¢ In zig-zag rotation, every node moves one position to the right followed by one position
to the left from its current position. Consider the following example...



Splay ( 4

Zag Rotation
% Zig Rotation 9 gat3 A
at 5

6. Zag-Zig Rotation

e The Zag-Zig Rotation in splay tree is a sequence of zag rotation followed by zig rotation.
¢ In zag-zig rotation, every node moves one position to the left followed by one position to
the right from its current position. Consider the following example...

Splay

OQO § B
Zag Rotat|on Zig Rotatlon
at3 at5

e Every Splay tree must be a binary search tree but it is need not to be balanced tree.

Insertion Operation in Splay Tree
¢ The insertion operation in Splay tree is performed using following steps...

Step 1 - Check whether tree is Empty.
Step 2 - If tree is Empty then insert the newNode as Root node and exit from the
operation.
Step 3 - If tree is not Empty then insert the newNode as leaf node using Binary Search
tree insertion logic.
Step 4 - After insertion, Splay the newNode
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Deletion Operation in Splay Tree
* The deletion operation in splay tree is similar to deletion operation in Binary Search Tree.

¢ But before deleting the element, we first need to splay that element and then delete it
from the root position.
¢ Finally join the remaining tree using binary search tree logic.
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H.W
1. 8,17,1,14,16,15 insertion using splay tree.

B - Tree

e In search trees like binary search tree, AVL Tree, etc., every node contains only one
value (key) and a maximum of two children.

e But there is a special type of search tree called B-Tree in which a node contains more
than one value (key) and more than two children.

e B-Tree also called Height Balanced m-way Search Tree. Later it was named as B-Tree.

B-Tree can be defined as follows...

B-Tree is a self-balanced search tree in which every node contains multiple keys and has

more than two children.

¢ The B-Trees are specialized m-way search tree. This can be widely used for disc access.
¢ A B-tree of order m, can have maximum m-1 keys and m children. This can store large
number of elements in a single node. So the height is relatively small. This is one great

advantage of B-Trees.

B-Tree of Order m has the following properties...

1. Every node in a B-Tree except root contains at least [m/2]-1 keys and maximum of
m-1 keys

2. Every internal node has at least m/2 children.

3. The root node has at least 2 children if it is not leaf.

4. A non leaf node with k children has k-1 keys

5. All leaf nodes must be at the same level.

6. All the key values in a node must be in Ascending Order.

¢ For example, B-Tree of Order 4 contains a maximum of 3 key values in a node and

maximum of 4 children for a node.




B-Tree of Order 4

30170

1[3[7]]15)21)23] |26|28 3538 ||42(49| |[56{67 TL|3|75( (77185 |[89]97

Operations on a B-Tree

The following operations are performed on a B-Tree...

1. Search
2. Insertion
3. Deletion

Search Operation in B-Tree

The search operation in B-Tree is similar to the search operation in Binary Search Tree.
In a Binary search tree, the search process starts from the root node and we make a 2-way
decision every time (we go to either left subtree or right subtree).

In B-Tree also search process starts from the root node but here we make an n-way
decision every time.

Where ' is the total number of children the node has.

In a B-Tree, search operation is performed as follows...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with first key value of root node in the tree.

Step 3 - If both are matched, then display "Given node is found!!!" and terminate the
function

Step 4 - If both are not matched, then check whether search element is smaller or larger
than that key value.

Step 5 - If search element is smaller, then continue the search process in left subtree.
Step 6 - If search element is larger, then compare the search element with next key value
in the same node and repeat steps 3, 4, 5 and 6 until we find the exact match or until the

search element is compared with last key value in the leaf node.



Step 7 - If the last key value in the leaf node is also not matched then display "Element is
not found" and terminate the function.

Insertion Operation in B-Tree

In a B-Tree, a new element must be added only at the leaf node. That means, the new key Value

is always attached to the leaf node only. The insertion operation is performed as follows...

Step 1 - Check whether tree is Empty.

Step 2 - If tree is Empty, then create a new node with new key value and insert it into the
tree as a root node.

Step 3 - If tree is Not Empty, then find the suitable leaf node to which the new key value
is added using Binary Search Tree logic.

Step 4 - If that leaf node has empty position, add the new key value to that leaf node in
ascending order of key value within the node.

Step 5 - If that leaf node is already full, split that leaf node by sending middle value to its
parent node. Repeat the same until the sending value is fixed into a node.

Step 6 - If the spilting is performed at root node then the middle value becomes new root

node for the tree and the height of the tree is increased by one.

Example:

Construct a B-Tree of Order 3 by inserting numbers from 1 to 10.

m=3

max children =m=3,

min children: leaf =0,root=2,internal node=m/2=1.5(ceiling) 2
max key=m-1=2

©O 0 oo



0 min key: root=1,other node=[m/2]-1=1.5(ceiling value) 2-1=1

1. Insert 1

2. Insert 2

112

3. Insert 3

After split

12;3 | ] =

Insert 3, but key value 2, so we split that node by sending middle value 2 to its
parent node. But here, this node doesn’t has parent. So, this middle value
becomes a new root node.

4. Insert 4
2
1 3|14
5. Insert 5
2| < 214
After split
1 3[4]5 1 3 5

o gorw split that node by sending middle value tﬂ;} to its parent nud;IE]L There is an empty position in its
parent node. 5o, value4’is added to node with value 2" and new element 'S’ added as new leaf node.

6. Insert 6



1 3 5|6
7.Insert 7
h 4
2|4 ... After split
* 2 6
1 3 5|67

Sa, we split that node by sending middle value (6) toits parent rrode_:l&d-}. But the parent (284) is
also full. 5o, again we split the node (284) by sending middle value 4’ to its parent but this node doesn't have parent.
5o, the element "4’ becomes new root node for the tree.

8. Insert 8

9.Insert 9

8

L1l 1131 | (sl 171 |[o] |

S0, we split this node by sending middle value (8) to its parent node. The parent node (6)
has an empty pnsilic-n_-s-::..'a'is aclded at that pm'rtic;n And new element is added as a new leaf node.

10. Insert 10
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B+ Tree



B+ Tree is an extension of B Tree which allows efficient insertion, deletion and search
operations.

In B Tree, Keys and records both can be stored in the internal as well as leaf nodes.
Whereas, in B+ tree, records (data) can only be stored on the leaf nodes while internal
nodes can only store the key(index value).

The leaf nodes of a B+ tree are linked together in the form of singly linked lists to make
the search queries more efficient.

B+ Tree are used to store the large amount of data which can not be stored in the main
memory.

Due to the fact that, size of main memory is always limited, the internal nodes (keys to
access records) of the B+ tree are stored in the main memory whereas, leaf nodes are
stored in the secondary memory.

The internal nodes of B+ tree are often called index nodes. B+ tree of order 3 is shown
in the following figure.

r

p

B

L)) (F°] ] [k
A

Advantages of B+ Tree

Records can be fetched in equal number of disk accesses.

Height of the tree remains balanced and less as compare to B tree.

We can access the data stored in a B+ tree sequentially as well as directly.
Keys are used for indexing.

Faster search queries as the data is stored only on the leaf nodes.

B Tree VS B+ Tree

SN

B Tree B+ Tree
Search keys can not be repeatedly stored. Redundant search keys can be present.
Data can be stored in leaf nodes as well as Data can only be stored on the leaf nodes.

internal nodes

Searching for some data is a slower process Searching is comparatively faster as data

since data can be found on internal nodes as can only be found on the leaf nodes.
well as on the leaf nodes.

Deletion of internal nodes are so complicated Deletion will never be a complexed
and time consuming. process since element will always be



deleted from the leaf nodes.

5 Leaf nodes can not be linked together. Leaf nodes are linked together to make the
search operations more efficient.

Insertion in B+ Tree

Step 1: Insert the new node as a leaf node
Step 2: If the leaf doesn't have required space, split the node and copy the middle node to the
next index node.

Step 3: If the index node doesn't have required space, split the node and copy the middle element

to the next index page.

CASE: MIN KEYS

Order (m)=4 Cannot add 10 here

Max children = 4 because max keys 3.

Min children = 2 Middle element can 4 or
Max Keys = 3 6, we will take 6, split the
Min Keys = 1 / node and make a right
Data: 1,4,6,12,19,21,31 biased tree.

(6) is just a pointer to the -um 12 All data should be present

in this node and must be

m-- equal to or greater than

Data on left should be / top node (6)

trictly less than the t
sl -II-%IIE 19

Leaf nodes connected with a link

mm- Guru99.com
ﬂﬂ- O FRENE

leaf node.

Example 2:

Insert the following key values 6, 16, 26, 36, 46 on a B+ tree with order = 3

m=3
Max children=3



Min children=2

Max key=2
Min key=1
=
Insert 6, 16, 26, 36, 46 on a B+ tree with order =3
Insert 6, 16
|
Lo el A
oG
A
(
Insert 26
causes overflow 6. 25
16
¥ \
6 16 || 26




Insert 36
16 IE 36
16 || 26
° » 16 26 || 36
oG
S
Insert 46
26, JE‘ 46 in leaf node
1s.zL 36  inrootnode
26
16 36
5 \ \
° | 16 26 36 || 46




Example 3:
Insert the following key values 1357 92 4 6 8 10 on a B+ tree with order = 4.

m=4

Max children=4
Min children=2
Max key=3

Min key=1

Insert1, 3,5,7,9,2,4,6, 8, 10

* |[nsert 1

* Insert 3,5

* |Insert 7/




* |Insert9

* |Insert 2

* Insert4

1 2

* Insert 6

1 2

i




* Insert 8

1 |2 {3 [ L[5 |[|s 7 |[[s ||o

* |Insert 10

|2 ||

-]

3 ][5 [ 1]

[z [[s [[ [F—llo [[10]] ]
[2 2 [ == ]la [ J-ls lls | \/

H.W

1. To construct B+ tree order 4, inserting values 1 4 7 10 17 21 31 25 19 20 28 42

2. To construct B+ tree order 4, inserting values 2 4 7 10 17 21 28

3. To construct B+ tree order 5,, insertingvalues 7 10 1 23 15 17 9 11 39 35 8 40 25

Deletion in B+ Tree

Step 1: Delete the key and data from the leaves.

Step 2: if the leaf node contains less than minimum number of elements, merge down the node with its
sibling and delete the key in between them.

Step 3: if the index node contains less than minimum number of elements, merge the node with the
sibling and move down the key in between them.



CASE: MIN KEYS

Order (m) =4
Max children = 4
Min children =2
Max Keys = 3
Min Keys = 1
Data: 21,31,20,10,7,25,42
Delete: 21

BE

New Index and nodes will
be like this after deletion

B8 =

oo @D Bn DR oD En 0

To delete 21, we have to
check at both the Index
and the Leaf node level
for the data 21 and
delete from both places.

21 is present only at leaf
level so we can simply
delete it from here.

(25 31
(25 26 Jll 21 a2

Guru99.com

CASE: MIN KEYS

Order (m) =4
Max children = 4
Min children =2
Max Keys =3
Min Keys =1

Data: 21,31,20,10,7,25,42

Delete: 31

-

mﬂ’

mE @ rlm B ma/ﬁm

Guru99.com

To delete 31, we have to
check at both the Index

and the Leaf node level

for the data 31 and

delete from both places.

New Index and nodes will
be like this after deletion

P .

For the empty Index, we
will look at the right child
and take the minimum
value and place it in the

index. '



Priority queues

¢ Priority queue is a special kind of queue data structure which will have precedence over

jobs.
® Priority Queue Data Structure is a regular Queue Data Structure with additional
properties
0 FEach element has a priority associated with it
0 An element with high priority is served before an element with low priority
0 If two elements have the same priority, they are served according to the order in
which they are enqueue
¢ Thus, a max-priority queue returns the element with maximum key first whereas, a min-
priority queue returns the element with the smallest key first.

BEDEIEICICE

Maximum key is returned first in the max-queue

20050 [0 ls 7 e 2 et

Minimum key is returned first in the min-queue

® Priority queues are used in many algorithms like Huffman Codes, Prim's algorithm, etc. It
is also used in scheduling processes for a computer, etc.

Basic Operations
1. Insertion operation:

It is similar to enqueue, where we insert an element in the priority queue.
2. DeleteMin operation:
It is equivalent of dequeue, where we delete at minimum element from priority

[—
m%

queue.

rermowe

Qe e

Implementations:
¢ They are several ways for implementing priority queue.



1. Linked list- simple linked list implementation of priority queue to perform
insertion at front and delete the minimum element.
2. Binary search tree - to perform insertion at front and delete the minimum element.
3. Binary heap — efficient way of implementing priority queue.
Binary heap:
¢ Binary heap is merely referred as heaps. A heap is a tree-based data structure in which all
the nodes of the tree are in a specific order.

¢ Heap have two properties namely,
0 Structure property

0 Heap order property
Structure property
¢ A binary heap is a binary tree (NOT a BST) that is the tree is completely filled except
possibly the bottom level, which is filled from left to right. such a tree is known as a
complete binary tree.
* Example of a complete binary tree.

op1]1213|4|5|6]|7]|8]92]10

AJC|B|D|G]|F|K|H]|E]J

e For any element in array position i, the left child is in position 2i, the right
child is in position 2i+1 and the parent is in position i/2.



Examples
(6)

@ @ @& ®
complete tree, ‘:~: 9
heap order is "max" : ‘\
o

not complete

complete tree,

: . complete tree, but min
heap order is "min"

heap order is broken

Binary Heaps 9

Heap order property

¢ In a heap, for every node X, the key in the parent of X is smaller than or equal
to the key in X. For example, a complete binary tree that has the heap order

property.

Binary Heap vs Binary Search
Tree

Binary Heap Binary Search Tree
_min va@

min
value

Parent is less than both Parent is greater than left
left and right children child, less than right child
Binary Heaps 7

A binary heap can be classified further as either a max-heap or a min-heap based on
the ordering property.



1. Max-Heap
In this heap, the key value of a node is greater than or equal to the key value of

the highest child.

Hence, H[Parent(i)] = H[i]

2. Min Heap
n mean-heap, the key value of a node is lesser than or equal to the key value of the

lowest child.

Hence, H[Parent(i)] < H[i]

Heapify
Heapify is the process of creating a heap data structure from a binary tree. It is used to create a

Min-Heap or a Max-Heap.

Difference

Min-Heap

Max-Heap

The root node has the minimum value.

The root node has the maximum value.

The value of each node is equal to or greater
than the value of its parent node.

The value of each node is equal to or less
than the value of its parent node.

A complete binary tree.

A complete binary tree.
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Operations on Max Heap
The following operations are performed on a Max heap data structure...

1. Insertion
2. Deletion

Insertion Operation in Max Heap

Insertion Operation in max heap is performed as follows...

Step 1 - Insert the newNode as last leaf from left to right.

Step 2 - Compare newNode value with its Parent node.

Step 3 - If newNode value is greater than its parent, then swap both of them.

Step 4 - Repeat step 2 and step 3 until newNode value is less than its parent node (or)

newNode reaches to root.

Example
Consider the above max heap. Insert a new node with value 85.

Step 1 - Insert the newNode with value 85 as last leaf from left to right. That means newNode is
added as a right child of node with value 75. After adding max heap is as follows...



() WE® @

Step 2 - Compare newNode value (85) with its Parent node value (75). That means 85 > 75
root

Step 3 - Here newNode value (85) is greater than its parent value (75), then swap both of them. After
swapping, max heap is as follows..

step 4 - Now, again compare newNode value (85) with its parent node value (89).
root

Here, newNode value (85) is smaller than its parent node value (89). So, we stop insertion process.
Finally, max heap after insertion of a new node with value 85 is as follows...



Deletion Operation in Max Heap

In a max heap, deleting the last node is very simple as it does not disturb max heap properties.

Deleting root node from a max heap is little difficult as it disturbs the max heap properties. We
use the following steps to delete the root node from a max heap...

Step 1 - Swap the root node with last node in max heap
Step 2 - Delete last node.
Step 3 - Now, compare root value with its left child value.

Step 4 - If root value is smaller than its left child, then compare left child with its right
sibling. Else goto Step 6

Step 5 - If left child value is larger than its right sibling, then swap root with left
child otherwise swap root with its right child.

Step 6 - If root value is larger than its left child, then compare root value with its right
child value.

Step 7 -Ifroot value is smaller than its right child, then swap root with right
child otherwise stop the process.

Step 8 - Repeat the same until root node fixes at its exact position.

Example
Consider the above max heap. Delete root node (90) from the max heap.

« Step 1 - Swap the root node (90) with last node 75 in max heap. After swapping max
heap is as follows...



e Step 2 - Delete last node. Here the last node is 90. After deleting node with value 90
from heap, max heap is as follows...

root

Step 3 - Compare root node (75) with its left child (89).

root

N

Here, root value (75) is smaller than its left child value (89). So, compare left child (89)
with its right sibling (70).



@) (@

Step 4 - Here, left child value (89) is larger than its right sibling (70), So, swap root (75)
with left child (89).

root

Step 5 - Now, again compare 75 with its left child (36).



Here, node with value 75 is larger than its left child. So, we compare node 75 with its
right child 85.

root

ONOIO

Step 6 - Here, node with value 75 is smaller than its right child (85). So, we swap both of
them. After swapping max heap is as follows...

root

L@
D (79)

Gy @ &
ONOIO

Step 7 - Now, compare node with value 75 with its left child (15).

root

S

(83) ()
36) D EE OO
ONOIO

Here, node with value 75 is larger than its left child (15) and it does not have right child.
So we stop the process.

Finally, max heap after deleting root node (90) is as follows...



example 2: Consider elements in array{1 4 3 7 8 9 10}

Step 1 Step 2 Step 3




Min heap

Consider elements in array {10, 8, 9, 7, 6, 5, 4} .

Step 1

Applications of priorty queue:

0 A priority queue is typically implemented using Heap data structure.

Applications:

0 Dijkstra’s Shortest Path Algorithm using priority queue: When the graph is stored
in the form of adjacency list or matrix, priority queue can be used to extract

minimum efficiently when implementing Dijkstra’s algorithm.



0 Prim’s algorithm: It is used to implement Prim’s Algorithm to store keys of nodes
and extract minimum key node at every step.

0 Data compression : It is used in Huffman codes which is used to compresses data.

0 Artificial Intelligence : A* Search Algorithm : The A* search algorithm finds the
shortest path between two vertices of a weighted graph, trying out the most
promising routes first. The priority queue (also known as the fringe) is used to
keep track of unexplored routes, the one for which a lower bound on the total path
length is smallest is given highest priority.

0 Heap Sort: Heap sort is typically implemented using Heap which is an

implementation of Priority Queue.

Binomial heap or queue

e Binomial heap is a heap which is similar to a binary heap but also support
quick merging of two heaps.
e This is achieved by using a special data structure we hae is called binomial

queue.

Binomial queue:

e Binomial queues are a collection of heap-ordered trees. Each of the heap-
ordered trees is called a binomial tree.

0 Not just one tree, but a collection of trees
0 each tree has a defined structure and capacity
0 each tree has the familiar heap-order property

e Binomial queue called as binomial heap, generally satisfy min heap
property.
e Assume binomial tree represented as Bx .That means, BT of order k
contains 2% nodes.
0 suppose order k -> 2%

0 ->2°=1 element
1 ->2!=2element
2 ->2?=4 element
3 ->23 =8 element
e The number of nodes in a tree of depth d is exactly 2¢9.


https://en.wikipedia.org/wiki/Data_compression
https://tutorialspoint.dev/slugresolver/heap-sort/
https://tutorialspoint.dev/slugresolver/a-search-algorithm/
https://tutorialspoint.dev/slugresolver/tag/huffman-coding/

Binomial Queue with 5 Trees
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Structure of binomial heap

e a binomial heap is implemented as a set of binomial tree that satisfy the
binomial heap properties,
0 each binomial tree in a heap obeys the min heap property(p<=c)

o there can only be either one or zero binomial trees for each order,

including zero order.

Operations in binomial queue:

merge
insertion
find min

H w e

delete

Merge operation:

e Simple operation is the merging of two binomial tree of same order within
a binomial heap.
0 By«=Bx1+Bk1



As their root node is the smallest element within the tree, by comparing

the two keys, smaller of them is the min key and becomes the new root
node.

Then the other tree becomes a subtree of the combined tree.

Example
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Insertion operation:

e Insertion is just a special case of merging, since we merely create a one-
node tree and perform a merge.
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Find Min operation:

e To find min element of the heap, only compare the root of the binomial

heap.
Delete min operation:

e Delete min element from the heap
e First find the element, remove it from its binomial tree and obtain a list of

its subtrees
e Then transform this list of subtree into a separate binomial heap by

reordering them from smallest to biggest order.



;deé’e/ M ( We Pzr{mm an@ min [teaf)

U@%

H(:}?b WC. vyoot lellﬂ-, bocatise yoof & min
Valuca .

2 Cg\&% X} wcfﬁau_é—

H“ ,}5&149"'[‘" a(bui"—/ kf{j —6’
°%hé

% Bz~ 7

Bo B,

¥ B
ngmwk T

@@%
T
By B3 .






	
	1. Single Left Rotation (LL Rotation)
	
	
	2. Single Right Rotation (RR Rotation)
	General Representation
	
	
	3.Left Right Rotation (LR Rotation)
	4. Right Left Rotation (RL Rotation)
	
	
	Example: Construct an AVL Tree by inserting numbers from 1 to 8.
	Example

	Splay Tree
	B - Tree
	Operations on a B-Tree
	Search Operation in B-Tree
	Insertion Operation in B-Tree
	B+ Tree
	B Tree VS B+ Tree
	Min-Heap
	Max-Heap


	Operations on Max Heap
	Insertion Operation in Max Heap
	Deletion Operation in Max Heap

